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ABSTRACT

Conjugate gradient methods have recently been applied to some
simple optimization problems and have been shown to converge faster
than the methods of steepest descent. The present paper considers
application of these methods to more complicated problems involving
terminal as well as in-flight constraints. A number of methods are
suggested to handle these constraints and the numerical difficulties
associated with each method are discussed. The problem of flight-
path optimization of a V/STOL aircraft has been considered and
minimum time paths for the climb phase have been obtained using

the conjugate gradient algorithm. In conclusion, some remarks are

made about the relative efficiency of the different optimization schemes

presently available for the solution of optimal control problems.




I. Introduction

Hestenes and Stiefel (1) in 1952 introduced the method of con-
jugate gradients for solving linear sets of equations. The same method
was used by Fletcher and Reeves (2) in 1964 to solve nonlinear pro-
gramming problems. Hayes (3) extended the method in 1954 to the
solution of linear problems on Hilbert spaces. Antosiewicz and
Rheinboldt (4) derived in 1962 convergence rates for these problems
and showed that convergence is obtained in a finite number of steps for
the linear~quadra c problem. Improved estimates of rates of con-
vergence were obtained by Daniel (5) in 1965. Lasdon, Mitter and
Warren (6) applied this method in 1966 to the solution of optimal
control problems. They showed that the conjugate gradient method
converged faster than the steepest-descent method on a number of
problems. Sinnott and Luenberger (7) recently used another variant
of the conjugate gradient method and gave similar results. In
addition, they extended the method to handle linear terminal con-
straints.

Most of the optimal control problems solved so far (6, 7) using
conjugate gradient methods have been simple in structure involving
either no or very few terminal constraints. Lasdon, Warren and
Rice (8) have tried using an extension of the Fiacco-McCormick
""Sequential Unconstrained Minimization Technique'!' to handle in-
flight inequality constraints, but the results were not too satisfactory
for the problem of range-maximization of a re-entry vehicle. (This
problem was originally solved by Bryson and Denham (9) using the

method of steepest-descent). Speyer, Mehra and Bryson (10) solved




the same problem using a separation technique to handle the state-
variable inequality constraint. This separation method has been
described in detail in reference 10. It will be briefly outlined in
section [V along with other methods for handling in-flight constraints.
Some of these methods will then be applied in section V to the flight

path optimization of a V/STOL aircraft.

II. Conjugate Gradient Methods

a) Parameter Optimization: Conjugate gradient methods have the

property that they m. imize a quadratic function of n variables inn

or less number of steps. They do so by generating a set of n directions
known as conjugate directions which span the n-dimensional space.

Let the function to be minimized be J = ;l,(x - h)TA(x - h) and let

PosPys - »P 1 be n vectors in Euclidean n space. They will be

called '""A-orthogonal'' or '"A-conjugate'', iff

T .
P, Ap; =0, i7] (1)

where A is a positive definite matrix.
Therefore,
T .- 2
PiAP, >0, ifp #0 (2)
It is easy to show that n ''"A-conjugate'' vectors are linearly inde-
pendent and form a basis for the n-dimensional space. If X, is the
initial guess, then (h - xo) can be expressed in terms of this basis

as follows:

n-1
- = 3
h X Z a.p, (3)
i=0
T
-p.  A(x_ - h) “P: g
where a,. = - Q = 22 (4)
! T
P, Ap, P, AP




d
where g, = A(x0 - h) is the gradient vector X

All conjugate gradient methods generate conjugate directions in one or
another way. Basically conjugate directions p; can be generated by a
Gram-Schmidt orthogonalization procedure starting from any arbitrary
set v , Vi, .-, Vo1 of vectors. It can be shown that if v, are the
coordinate vectors, then the conjugate gradient method is functionally
equivalent to the gaussian elimination procedure. But the most con-
venient choice for | is the negative gradient vectors or the residue
vectors ri:

r, =g = A(h - Xi) (5)
This choice leads to a number of simplifications and, finally the

following algorithm is obtained. Details of the proof can be found

in Beckman (20).

X arbitrary
g, = 8lx,)
Py, = 78
“Py & 6
X, 41 =X +a.p where a.——,I—,X—— (6)
P; APy
gy I
P =-g.., tB.p where P =-—~———gi+1 (7)
i+l i+l it1 i “ “2
&

This algorithm can be used for nonlinear programming problems

as well. However, the matrix:A is no longer-.a constant matrix and has to

be computed at each step. One can avoid this by noting that if J is
minimized along the direction (xi + Cipi) with respect to c the opti-
mum value of ¢, is exactly a, (20). Notice that if ﬁi = 0, the conjugate
gradient method becomes a steepest descent method.
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The conjugate gradient algorithm has a number of interesting
properties. Rutishauser (11) compares it with other gradient methods
and shows that it is the best method amongst a class of iterative
gradient procedures for solving linear sets of equations. If € denotes
the error vector (h - Xi)’ it can be shown that || €41 “ < €; [[¥i. Also,
it can be shown that J is decreased at each step. Geometrically, P,
is the projection of the negative gradient vector g; on to the subspace
spanned by Pj>Piy1s 5P e Thus we successively reduce the
dimension of the subspace onto which -g; is projected. This gives
convergence in a finite number of steps.

b) Optimal Control Problems: Conjugate gradient methods can be

readily extended to Hilbert spaces (3, 5). Consider the Mayer problem
in the Calculus of Variations: Find u(t) to

minimize J = d)(x(tf))
subject to % = f(x,u,t) (8)

x(to) and t. are given, but x(tf) is free.

f
x is an nx1 state vector and uis an rx1 control vector,

both functions of time variable t.

The Hamiltonian of the system is H = i , (9)
and the adjoint equations are A = -fT)\ (10)
X
= 11
Mt = ¢ (x(t), b)) (11)
oH Tof




g is a vector of functions and relates 06J to Ou (13, chapter II).

+
L

f

0J = f gbudt (13)

t
o

g plays the role of gradient vector in the finite dimensional

case.

The same algorithm (equations 6 and 7) applies except that the scalar

t

multiplications are changed to integrations. E.g., ” g; ”2 = [ gilrgi dt.

t
o

c) Computation Details: A fourth order Runga-Kutta scheme is used to in-

tegrate the Euler-Lagrange Equations. It is necessary to store a
direction of search to calculate the next direction of search. A cubic

interpolation scheme (2) is used for one-dimensional search. It uses all
BJ(ui) 8J'(ui+1)

+1)’ 9a, ° da . to fit
i i

the information available, i.e., J(ui), J(ui

the "smoothest curve' through the points u, and u, i.e., the curve

+1°
a.
12
which minimizes the integral f gi__% do where a. is the step size.
do
0

III. Terminal Constraints

The conjugate gradient algorithm as given above applies only to
unconstrained minimization problems. Modifications to the algorithm
are necessary when there are constraints on the problem. A fairly
general optimization problem with terminal constraints can be stated
as follows: Find u(t) to

minimize J = q)(x(tf),tf) (14)

subject to  x = f(x,u,t) ; x(to) given (15)
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and z,b(x(tf), tf) =0 q terminal constraints (16)

Q(x(tf), tf) =0 stopping condition for (17)
determining te.

In effect, there are (q + 1) terminal constraints. Any one of
these can be chosen as a stopping condition. This is an unnecessary,
arbitrary but useful device.

Two of the numerical methods for solving such problems are
given below.

a) Penalty Function Method: Objective function J is modified using a

quadratic penalty function

T=T+y¢ Ky (18)
where K is a positive-definite matrix of penalty function constants. A
sequence of unconstrained J problems is solved with increasing values
of K. In the limitas K —> 00 we get{y —> 0, J —>J

pt’
u —>u_ .. To check the efficiency of this method, it was used to

opt

solve a number of problems. The method worked quite well on linear-
quadratic problems and simple nonlinear problems. Examples 1 and 2
of Ref. (6) were solved in one computer run by using a large enough
value of K. The minimum time earth-to-mars orbit transfer problem
of Ref. (12) converged in 18 iterations starting from a stepped nominal
and using about 1 minute of IBM 7094 computer time.

However, when this method was tried on flight path optimization
problems involving aerodynamic drag and lift terms, the method ran into

difficulties whenever the number of terminal constraints was increased

beyond two. The reason seems to be that the "frozen-point" eigen-values of




the linearized system are split far apart due to damping terms. We
define more clearly what we mean by eigen-values of a nonlinear
system: If we linearize the equations around some nominal path and
assume that the coefficients of the linearized equations vary sufficiently
slowly in time that they may be considered constant over some period
of time, we may talk about the eigen-values of this system. For a
typical problem involving three state variables, V (velocity), h (altitude)
and y (flight path angle), the convergence was extremely slow if termi-
nal constraints were put on all the three state variables simultaneously.
Since for most of these problems, the terminal time is not specified,
some sort of stopping condition is needed to determine tf at each itera-
tion. In this way, one of the constraints is automatically satisfied. It
was found that the penalty function method could be used to handle at
most two terminal constraints. If there were more terminal con-
straints, the convergence was extremely slow.

Various other types of penalty functions can be used. However,
there is one common difficulty, viz., addition of penalty functions
may change the problem completely creating narrow valleys and
splitting the eigen=-values of the system far apart. An example of this
type of behavior is given in (13, chapter. I). It is well-known that
gradient procedures converge very slowly when the eigen-values of
the system are split far apart.

b) Gradient Projection Method: Rosen's gradient projection method

(14) was used by Bryson and Denham (9) to solve optimal control
problems using a steepest descent method. The same method can be

used with the conjugate gradient method to handle linear terminal
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constraints (7). If the step size a, is small so that linearization is valid,
the same method should work for nonlinear constraints as well.
Bryson and Denham [9] have derived an expression for the pro-

jected gradient, §. They show that

I R |
g—fu()\¢ X¢I¢§UI¢¢) (19)
where

hy - -f;fxd) BNOE cb;f(x(tf),tf) (20)

hy - -;wa PNt = W (xlty), t) (21)
te

Ly * f X:ifufg)\w dt (22)
tO
ts

1’“) = f)\;ll;fuf:f)\(bdt (23)
t
O

Conjugate directions ﬁi are generated using §i, 131_1 and equations
(6) and (7). If a change d{/ is desired in the constraint level, ¥, the

control change Ou is given by

I R |
Gu—fukwl¢wd¢ . (24)

The conjugate gradient algorithm is modified as follows:

_ = 2
ETS I A (23)

(i) Start with mi = 1 and obtain ai by a one-dimensional search.

(ii) Calculate the value of $i+l(tf) using U, If linearization holds,

+1°
:,bi_l_l(tf) should be the same as l,bi(tf). If not, reduce m, so that

“wi+1 - EUl“ < €, where ¢ is a small positive number.

Sk

Authors do not have computational experience with this method so far.
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(iii) Choose dlpi and calculate the corresponding Gui. Add this to L

Wy = Wyt 0w

Note that d?,bi should not be so large that the linearity assumption

is violated.

If this algorithm is used on a linear-quadratic problem with linear
terminal constraints, the directions of search P, i = 0, n -1 will be
conjugate and convergence would be obtained in a finite number of steps.

For a nonlinear problem, however, the directions p;» i=0, n-1, will

not be conjugate ir general due to the addition of du from Eq. (24)at each step.

bypass this difficulty, one may try to satisfy the terminal constraints
first and then hold them constant using the gradient projection scheme.
This method would work well if the constraints are linear, but if the
constraints are highly nonlinear, m, will have to be chosen small enough
so that linearization holds. In such a case, it might be better to approach
near the optimum using the penalty function method and then refine the
solution using the gradient projection method. Typically,in most of the
optimization problems, the step size a; gets smaller and smaller as one
approaches the optimum. So the linearization assumption would not be
violated and the gradient projection method would generate conjugate

directions near the minimum.

IV. In-Flight Constraints

There are three types of possible in-flight constraints which may
be added to the problem statement in section III:
1. Control variable inequality constraints; N(u,t) < 0. (26)
2. Control and state variable inequality constraints or mixed
constraints; C(x,u,t) < 0. (27)

3. State variable inequality constraints; S(x,t) < 0. (28)

-9_
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We first describe general methods (a), (b) and (c) applicable
to all of these cases. Then we describe special methods (d) and (e) for
particular types of constraints.

a) Penalty Function Methods

Consider a scalar mixed constraint
c(x,u,t) < 0. (29)
Introduce a new state variable r such that

KCZ ifc>0

0 ifcs 0

where K is a large positive constant and
=0.
r(to)

Then if r(t.) £ 0, the constraint ¢ S 0 is approximately satisfied.
The Interior Penalty Method of (8) tries to solve a sequence of

minimization problems

te

Plu, r] = ¢(x(tf),tf) - r f _C-(%m (31)
t
o

where r is a positive scalar and tends to zero. It can be shown that
this method approaches the constraint boundaries from the interior (8).
Our experience has shown that these methods work poorly on
highly nonlinear control problems. Lasdon et al. (8) encounter con-
siderable difficulty in solving the re-entry problem. Moreover the
constraint can never be exactly satisfied because these methods work

by violation of the constraints.
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b) Transformation of Variables

M. J. Box (15) has used this method for solving some nonlinear
programming problems. It can be used for optimal control problems
also, e.g., if a variable S has to be positive, we can use another

variable y which is unconstrained and is related to S as

(i) S=y (32)
or

(ii) S=e7 (33)

Similarly, if 0 € s 1

(i) S = sinzy (34)

or
e’
(ii) 8 =————— (35)
el +e Y
IfS . Ss=s5s R
min max
. 2
S = smin + (Smax - smin)51n y (36)

Then an unconstrained problem in y space is solved.
These methods are applicable to control and mixed type constraints
only. Moreover, they produce slow convergence near the boundaries,

e.g., if Smin s S < Smax and the above transformation is used,

9S

By = (Smax - Smin)sin 2y (37)

which will be zero for
w
y = 0,5 or for S= Smin’ Smax .

c) Gradient Projection Method

Bryson, Denham, and Dreyfus (16) have shown that inequality
constraints can be handled by solving for a set of inner-point equality

constraints plus control constraints. Gradient projection can be used

-11-




with the conjugate gradient method to handle inner point constraints

in the same way as the terminal constraints. The gradient vector g

is computed using equations given by Bryson and Denham (9). The
conjugate directions are generated separately for the paths before

and after the inner-point constraint. The gradient on the arc before

the inner-point constraint is projected on the intersection of two sub-
spaces viz. those of the inner-point constraints and the terminal con-
straints whereas the gradient on the arc after the inner-point constraint
is projected on one s :bspace only viz. subspace of the terminal con-
straints.

d) Control Variable Inequality Constraints: Bang-Bang Solution

If the control variable enters linearly in the equations of motion
and in the performance index of the problem, one can show (13) that
the control always lies on one of the boundaries. The problem is
thus reduced to determining the switching times.

Ifu . Susu and if t.'s are the switching times, then
min max i

%ﬁ= (‘1)1—1()\Tfu)(u -u_.) (38)

i max min

assuming at t,, u goes fromu___tou . (9).

Treating ti as control parameters, we can iterate on them to
obtain optimum switching times. If the number of switching times
is unknown, it is better to start with more switching times than anti-
cipated. The above technique can eliminate some switching times,
but it cannot add extra switching times.

Then parameter optimization can be carried out using the

conjugate gradient method (section IIa).
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e) State Variable Inequality Constraints (SVIC); Separation of Arcs

This method is due to Speyer (17). It is applicable whenever the
order of the SVIC is one less than the number of state variables in
the system. In such cases, it becomes possible to compute the uncon-
strained arcs separately (10). One finds that the motion along the
constraint boundary depends only on one state variable. Using this
as the variable of integration, the value of the performance index
along the constraint boundary is expressed as a function of the entry
and exit point values of this variable. These functions are lumped
suitably with objective functions along unconstrained arcs and the pro-
blem is reduced to a set of unconstrained problems. Speyer, Mehra
and Bryson (10) use this method to solve the problem of range-
maximization of a re-entry glider (9). The results obtained by them
show that this method is very powerful, whenever it can be applied to

problems with SVIC,

V. Flight Path For Minimum Time Climb-To-Cruise

of a V/STOL Aircraft

Compared to conventional aircraft, V/STOL aircraft have an
extra control variable, namely the angle between the thrust direction
and a reference axis in the aixcraft. It is of interest to know how
this extra control variable may be used to improve the performance
of the aircraft.

If a flight is long enough, it can be divided into three paths:

(i) Climb phase starting from the ground and going up to some cruise
condition;
(ii) Cruise at some constant altitude and velocity;

(iii) Landing phase.

-13-




Depending on the particular use to which the V/STOL aircraft
is put, there may be flight path constraints on (i) and (iii).

If the cruise conditions are known, the optimization problem
reduces to optimization of the two arcs (i) and (iii) separately, be-
cause the cruise conditions specify the state completely at the end of
path (i) and at the beginning of path (iii).

Here, we shall consider the hypothetical jet-lift'aircraft to Ref.
(18).::< Gallant (19) has considered a tilt-wing V/STOL aircraft and
obtained minimum-di ~ect-cost flight paths for a 50 mile flight
starting from the ena of the transition to the beginning of the retransi-
tion.

Problem Formulation

The aircraft will be approximated as a mass-point. Figure 1
shows the forces acting on the aircraft. Figure 2 shows the thrust
force in greater detail. It is assumed that the jet inlets are always
pointed in the direction of the relative wind velocity. This approxi-
mation is reasonable in view of the rough model assumed for the V/STOL
aircraft and in view of the final results which show that the angle-of-
attack is kept small during most of the flight.

The equations of motion are:

V- L -2 giny - M - i

V== cos{a+i) % - gsiny - = V[1 - cos{a+i)] (39)
. T . . L M . .

Y = &7 sin(ati) + =5 %.—cos y + 3 sin(ati) (40)
h=V sin vy (41)
Xx=Vcosy (42)

Authors gratefully acknowledge the help and suggestions received
from Professor R. H. Miller and his students at the Flight Trans-
portation Laboratory, Massachusetts Institute of Technology,
Cambridge, Massachusetts.
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L + Dy /

/ Dm = Momentum Drag Along V-oxis.

D+D - - axi
m mgq Dm = Momentum Drag L To V-axis.
FIGURE |
_— - M,
. \)
(a+i)

|
: RATE OF AIR FLOW =M
| EXIT VELOCITY OF GASES =Ve

M, Ve FIGURE 2

Force along V axis = F, = n'nve cos (@+i)— MV
Force L to V direction = Fy = Mve sin(a+i)
Thrust T= MV, -MV ( Equal net force when (Q+i)=0)
o Fy =Tcos (@+i) =MV (1 —cos(a+i))
Fy=T sin (@+i) + MV sin (@+i)




Where

. _1 2
Lift L=5PVC:S (43)
Dra D = lp VZC S (44)
g 2 D
CL = CL a (45)
a
2
CD = CD + CD a (46)
o] 1
Air Density P = .0023769(1 -.6875x 10_5h)4' 2561 (47)
Equation (47) holds for h < 36, 000 ft.
The characteric”ics of the hypothetical aircraft are
_ _ _.55h C
Thrust T = TO (1 ————-30’ OOO) where h is in ft.
Mass m = %—62—9-02—2 slugs (taken as constant during climb)
. 2
Wing Area S = 421 f{t
CD =.027
o
CL =5.73
a
2
C
. T _(s.13)% | .
D, " TeAR ~Tx.9X%6 '

Rate of Air Flow M = TO/(65 x 32.2) slugs/sec.
if T is in lb.
o
There are three control variables in the problem:

Magnitude of thrust vector (To), (0 = To s To );

max

Direction of thrust vector (i);

Angle of attack (a) or pitch angle (0).
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It is preferable. to use 0 instead of-a,as. the co,n,tr\ol; Va,riablep '
The useinf € .as the control variable adds extra damping terms into
the,equations of motion whichohelp in-gonvergenge.

We: shall obtain minimum time paths undetithe:following

asldumiptions: .. . ..

1) Thrust, To’ is kept constant at its maximum value. This is a
reasonable assumption for the climb phase of the flight. In
particular, we shall use To = 1.25 mg.

2) Initial conditions for the problem are

V(0)=0 , h(0)=0 , x(0)=0

The Y equation has a singularity at V = 0. To integrate the
equations of motion numerically, we must start with a finite V. The
aircraft would attain this velocity after flying for some time, say ty
in some particular manner. This part of the flight may be partially
or completely determined by restrictions on the runway available
for take-off, e.g., if the aircraft must take-off vertically, then
Y(tl) = 90° where t, will be some time either during or at the end
of the vertical take-off period. We will now consider a few specific
cases.

Unconstrained Take-Off. To get an idea as to what the aircraft

should do if there were no constraints imposed on it due to the
ground, we shall consider the case in which the aircraft can even
go underground. While this case is unrealistic, it will provide
useful information about the optimal paths with constraints. We
do not know whether a V/STOL aircraft should take-off like a
conventional aircraft (by first picking up speed along the runway)

or whether it should take-off directly making some angle Y(0+) > 0

-17-




to the horizontal. If we solve the unconstrained problem treating
Y(tl) as a control parameter, we should be able to answer this
question.

The initial conditions for this case may, therefore, be taken

as, (treating t; as starting time denoted by 0)

V(0) = 50 ft/sec

Y(0) chosen to make XY(O) =0.
(This means that the optimization process must drive )xy(O) to zero.)
h(0) =0 @ =x(0)=0
Changing h(0) from 0 to several hundred feet will not change the results
significantly.
The terminal conditions are the cruise conditions. The final

time, t_, is to be minimized:

f’
y(ty) = 0
h(tf) = 20,000 ft
V(tf) free
x(tf) free

A constraint on V(tf) could be met easily either by changing
the path slightly or by changing thrust magnitude towards the end
of the climb phase. The control variables used are 0 and i.
Figures 3, 4, 5a, 6, 7, and 8 show the results obtained
for the case when there are no constraints on take-off. The opti-
mum value of y(0) at V = 50 ft/sec turns out to be about 7°. But
the interesting fact is that y soon becomes negative and the aircraft

goes about 300 ft underground. Reasons for this seem to be:
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(i) The thrustis greater at lower altitudes;

(ii) The aircraft should pick up velocity as fast as possible in order
to generate aerodynamic lift. Lift obtained from tilting the jet
is not very efficient because it gives lots of momentum drag.
The angle (a+i) is apparently kept low in order to keep this drag
low (cf. Fig. 5a).

To keep the surface drag low, angle of attack a is also kept
small as shown in Fig. 8. The aircraft dives down because gravity
helps it in picking up speed. Figure 4 shows velocity vs. range.

After the aircraft has picked up velocity during the diving
maneuver, y increases quickly to a maximum value of 56. 6° (Fig. 5a).
Figure 3 shows how h increases during this phase. However, 8 also
increases at the same time so thata = 6 - y remains small. Jet-tilt
angle i is also kept small. Thus, the total drag is kept low. This
maneuver is followed by a rapid change in 8 to a negative value of
about -25°. This is necessary to meet the terminal condition on y
viz. y(tf) = 0. The total time taken by the aircraft is 53 sec. Calcu-
lations show that if the aircraft is made to climb vertically all the
way up‘ from the ground, it takes twice as much time. The velocity
in that case never exceeds 300 ft/sec.

Thus the results show that a V/STOL aircraft without take-off
constraints should fly very much like a conventional aircraft. Aero-
dynamic lift is more efficient than jet-lift. On the other hand, the
aircraft should keep angle-of-attack a small to keep aerodynamic

drag low.
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Horizontal Take-Off Constraint. Let us now impose the constraint

that the aircraft cannot go underground. However, it can still run
along the ground. Numerical results show that when the aircraft
reaches V = 300 ft/sec, the optimal path no longer dives down. We
could integrate the equations of motion of the aircraft on the ground
to calculate the distance in which the aircraft can attain this velocity.
This also indicates that the best take-off for a STOL aircraft is to fly
parallel to the ground at low altitude for a considerable distance.

Vertical Take-Off Constraint. We now impose the restriction that

the aircraft must ily vertically up to an altitude of 1000 feet. From
the results obtained above, it appears that the best way to do this
would be to make 6 = 90° so thata = 0, i = 0, y = 0. Integration of
the V equation gives V = 125 ft/sec at h = 1000 ft. Time taken is 8
seconds. The optimization problem is now solved with the following
initial conditions:

V(8) = 125 ft/sec
v(8) = 90°

h(8) = 1000 ft.

x(8) = 0

The results are shown in Figs. 3, 4, 5b, 6, 7, and 8. The

total path (from take-off) is 60 seconds long and is similar to the
unconstrained take-off case. The aircraft goes up first due to posi-
tive y, but soon dives down to a minimum altitude of about 980 fit.
The control variables € and i have discontinuities at t = 8 sec. when
the constraints are relaxed.

Similar behavior would be obtained if the aircraft were con-

strained to take-off at some other constant value of flight path angle
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YC' The equation y = 0 determines one of the control variables in
terms of the other (say i in terms of 0). If 6 is constrained by

0 < Yo » @s in the case above, one would intuitively expect that 6

would remain constant at Yo+

VI. Conclusion

Our computational experience has shown that the conjugate
gradient method, though very efficient for simple optimization pro-
blems, may run into difficulties when applied to more complicated
problems. Some of the difficulties that may be encountered are:

1. Gradient of the objective function with respect to the step size

may not become zero or small enough during one-dimensional search.
Accumulation of errors due to this source can produce directions of
search which increase rather than decrease the performance index.

In such cases, it was found useful to revert back to the local gradient
direction and start the process over again. This procedure is similar
to the one suggested by Beckman (20) and also used by Fletcher and
Reeves (2) for nonlinear programming problems.

2. Use of penalty functions may split the "frozen-point" eigen-values

of the linearized system far apart and make convergence extremely

slow. The use of the gradient projection method, though more com-
plicated, may help in this case, particularly near the optimum.
Conjugate Gradient Methods vs. Steepest Descent Methods:

(i) For optimal control problems having either no or few constraints,
conjugate gradient methods, though requiring more programming,
are faster and lead to a better solution than steepest descent
methods. For linear-quadratic problems, conjugate gradient

methods reach the optimum in a finite number of steps.
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(ii) For optimal control problems with a large number of constraints,
conjugate gradient methods run into the above-mentioned diffi-
culties. It then becomes necessary to control the step size during
the one-dimensional search and the directions of search are no
longer conjugate to each other. In nonlinear problems with
nonlinear constraints, it is not clear that conjugate gradient
methods would do better than steepest descent methods except

when starting close to the optimum.

Conjugate Gradier® Methods vs. Second Variation Methods:

(i) Conjugate gradient methods require less programming and less
computation per iteration than second variation methods.

(ii) Second variation methods require the matrix of second variations
of the Hamiltonian with respect to the control (Huu) to be non-
singular. Conjugate gradient methods do not require this.

(iii) Conjugate gradient methods do not converge to extremals con-
taining conjugate points, whereas second variation methods
try to converge towards these extremals.

(iv) Second variation methods lead to more accurate solutions than
conjugate gradient methods, particularly to better control his-

tories.
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